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Final Report

Development of magnetically, optically, electronically as well as electrically modulated
materials, the properties of which can be deliberately by external stimuli or by synthesis methods
is of great importance for modern technology. An attractive possibility is using light to control
material properties, particularly in the context of the rapidly developing field of photonics, in
which light, rather than electrical current, is used in information transfer and processing. This
would provide new options for the development of ‘smart materials [1].” Magnetic materials
with magnetic properties tunable with light may lead to a new mode of control in ubiquitous
magnet-based devices. In particular, as the information technology's ever increasing need for
faster information processing speeds and higher storage densities require new ways to write,
erase, and read information, the possibility to manipulate information bits in a magnetic medium
at microscopic (molecular) level by light beams is very attractive.

A textbook example of materials for which the magnetic properties can be changed by
light irradiation are paramagnetic spin crossover complexes, in which visible light induces
changes in spin configurations of individual metallic ions [2]. In these systems, however,
individual elementary magnetic moments (‘spins’) interact very weakly and no cooperative
magnetic behavior (magnetic order) is present, thus the materials have measureable, but
relatively very weak magnetic signals. In 1996 a fundamentally different photoinduced effect
was discovered in ‘Prussian blue’ magnets [3]. In these materials, which belong to the class of
molecule-based magnets [4], photoinduced magnetic phenomena (photoinduced magnetism, or
PIM in the text that follows) coexist with cooperative magnetic behavior, i.e., with magnetic
order. This coexistence brings about a possibility for optical control of the magnetic order which
leads to strong magnetic signals (even exceeding the magnetic signal before photoexcitation),

and a number of novel, spectacular and readily detectable effects.




Motivated by the initial report of photoinduced effects in Prussian blue magnets we
initiated the project on photoinduced magnetism aimed at detailed characterization of these
materials, understanding the fundamental mechanisms of PIM, identification of new materials
exhibiting enhanced PIM effect, and optimizing PIM properties for possible applications. The
project built upon our nearly two decades of experience with synthesis and characterization of
organic-, molecule-, and polymer-based magnets, including the introduction and characterization
of several classes of organic-based magnet materials.

The progress in the studies of photoinduced magnetism we have made in the three-year
initial grant period is remarkable, and includes advances in experimental methods, understanding
of fundamental PIM mechanisms, and synthesis of a new light-tunable magnet.

Based on our elaborate magnetic and PIM studies of a series of Co-Fe Prussian blue
analogs, we determined a highly unconventional type of magnetic ordering in this class of
materials and proposed the first model for PIM effects that accounts for the observed cluster
glass behavior. The experimental studies included the first use of ac susceptometry in
investigation of PIM. The application of photoinduced ac susceptometry allowed for the first
time the direct observation of the light induced changes in spin dynamics.

Our search for new light-tunable magnets brought about a discovery of the first such
system based on organic species, Mn(TCNE),'x(CH,Cl,). The significance of this finding lays
both in its novelty and in the dramatically higher operating temperature (close to nitrogen boiling
temperature of 77 K) then the one characteristic for Prussian blue magnets (~20 K).
Photoinduced effects in Mn(TCNE),x(CH,Cl;) were studied by boih magnetic and optical
spectroscopy methods. The optical studies revealed that PIM in this material is accompanied by
changes in the electronic configuration as well as structural changes, which allowed us to
determine fhat the PIM occurs via an entirely novel physical mechanism different from that
operating the Prussian blue magnets.

Our studies to date have resulted in several major and well-cited publications in

international journals and more than a dozen invited and contributed presentations at




international conferences on physics, chemistry, and materials science. The discovery of PIM in
Mn(TCNE),x(CH,Cl,) received a notable attention in the broad scientific community and it
presents one of the more publicized scientific advances in the first half of 2002 (see Section IV
for a list of citations of this discovery). |

A summary of our achievements during the previous AFOSR grant (F49620-00—0050) is

below.

Progress and Accomplishments During the Period of the Previous AFOSR Grant No.
F49620-00-0050

The completed grant period (1 Decembér 1999 — 30 November 2001) has been one of
exciting and rapid progress in our investigations of the phenomenon of photoinduced magnetism.
Our research has resulted in a number of major publications (Appendix A.I), invited (Appendix
A.I) and contributed (Appendix A.II) talks. It has received a notable recognition from the
scientific community, with more than thirty citations in less than two years, as well as attention
of a wider audience, reflected in numerous popular articles featuring our work (Section A.IV). A

list of publications, presentations, and articles in popular press that have resulted from the studies
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Fig. 2.1. Scheme of the microscopic

mechanism for PIM in Co-Fe Prussian blue.
S denotes total spin of the respective ions.
Vertical arrows symbolize light excitation.

Fig. 2.2. Schematic structure of Co-Fe
Prussian blue.




under the previous AFOSR grant is presented in Appendix A.

Progress in studies of PIM in Co-Fe Prussian blue analogs

In 1996 fascinating photoinduced magnetic phenomena were reported in cobalt-iron
Prussian blue analogs [3]. Depending on stoichiometry, these materials are paramagnets or
exhibit long range magnetic ordering at low temperatures (< 25 K). Upon illumination with light
in the red region of spectrum dramatic changes in the magnetic state of the materials are
observed, including increased magnetic ordering temperature, magnetization, remanence and
coercivity [3]. At low temperatures these effects are preserved for several days after
illumination. The materials can be brought to the ground state by blue or infrared light
excitation, or by warming to ~150 K [3, 7]. It has been determined that the mechanism
responsible for optically controlled magnetic order is photoinduced inter-ionic electron transfer
accompanied by a spin flip, resulting in the increased number of unpaired spins on the metal sites
(Fig. 2.1) [3, 8]. It has also been found that the structural disorder, produced by vacancies in
Fe(CN)s sites (Fig. 2.2), plays the key role in stabilizing the photoexcited state [7, 9, 10]. The
cobalt sites in the vicinity of such a vacancy have reduced ligand field strength, which favors
high-spin state Co'(S = 3/2) and allows for easier photoinduced transition from low-spin to high-
spin state [7, 11, 12].

While the microscopic origin for PIM has been the subject of extensive studies since the
discovery of the effect, the mechanism of magnetic ordering and, particularly, the question
whether structural disorder affects the magnetic ordering, were prior to our work not discussed.
We performed the first systematic study of the magnetic state in this class of materials,
employing both the static and dynamic magnetic susceptibility measurements [13, 14]. The
study included detailed analysis of the effects of illumination on virtually every aspect of the
magnetic ordering. These studies revealed that the materials exhibit a highly non-conventional
type of magnetic ordering. True long-range ferrimagnetic order, assumed in earlier studies, does

not occur in these cobalt-iron Prussian blue analogs. Its absence is attributed to a significant




structural disorder noted above.

Instead, the materials show a complex low-temperature

magnetic behavior with coexisting short-range collinear order and spin glass properties [13, 14].

Our proposed cluster glass model qualitatively level accounts for all the observed magnetic and

PIM behavior. In this model the increased spin concentration in the photoexcited state leads to a

shift of the entire dynamics of magnetic ordering towards longer length and time scales.

Our breakthrough in understanding the nature of magnetic ordering and the effects of

illumination on this ordering was made possible by application of a novel experimental

technique. We reported the first use of ac magnetic susceptibility to study PIM [14] in any
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Fig. 2.3. In-phase (top) and out-of-phase (bottom)
ac susceptibility for Prussian blue analog
Ko.6Co1.2[Fe(CN)s]-4.9H,0, before and after
illumination (solid and open symbols, respectively).
[llluminated for 1 h with red light (650 nm filter
with 80 nm bandwidth, light intensity

~50 mW/cm?).

material. This was achieved by designing
a fiber optics accessible sample holder for
our ac susceptometer. This technique
(‘photo-susceptometry’) “allows detection
of very small light-induced changes in
susceptibility (~10® emu) and direct
observation of changes in spin dynamics
produced by the photoinduced transitions.

The data in  Figure 23
demonstrates application of the photo-
susceptometry  technique to Co-Fe
Prussian blue analog Kg¢Coj2[Fe(CN)-
6]-4.9H,0. Both the in-phase (¥’) and out-
of-phase (¥”’) components of the linear ac
susceptibility e (Yae = ¥ - ix” ) were
measured in a wide range of frequencies f
of applied ac magnetic field (33 < f< 3300
Hz). For the state before illumination

(ground state), below ~16 K the in-phase




component becomes f-dependent. This is accompanied by occurrence of a nonzero out-of-phase
component. At lower temperatures ’(T) and x”(T) exhibit f-dependent peaks. Frequency
dependence of 2,/(T) is an evidence for long relaxation times in the system, not observed in
systems with conventional long-range magnetic order. The y’ peak temperature T, has a small

relative shift per decade of frequency:

8T, = (AT,/T,)/A(log f) ~ 0.01.

o5l &« before illumination

o - after illumination This fact indicates that magnetic moments

§ in the system undergo cooperative (spin
%—: glass-like) freezing, in contrast to
‘:8 progressive  blocking of individual
gn moments  (superparamagnet-like),  for
e

which 87}, is an order of magnitude larger,

typically ~0.5 [15].

5 10 15 20 25 30
T(K) In the photoexcited state both

ig. 2.4. Temperature dependence of the nonlinear components of the ac susceptibility are

susceptibility of Ko ¢Coi 2[Fe(CN)]-4.9H,0, before | substantially increased. The susceptibility
nd after 1 h of illumination with red light,
easured at frequency of 333 Hz and ac magnetic | peak temperatures are increased by ~2 K,

ield of 15 Oe.

while the temperature of the onset of

frequency dependence of y’ is increased by ~7 K. The ac susceptometry method allows for a
direct detection of the changes in spin dynamics upon illumination. In the ground state ¥’ in the
region ~16 - 22 K does not show frequency dependence, indicating that all relaxation times in
the system are much shorter than the experimental time window (equal to the inverse frequency,
i.e., 30 ms - 0.3 ms). However, in the same temperature region the photoexcited state " shows
pronounced frequency dependence, indicating that the longest relaxation times in the system
extend beyond the experimental time window. Thus through photo-ac-suscptometry we directly

observe slowing down of the spin dynamics upon illumination.




The ac susceptometry also allows for the nonlinear terms in the magnetic susceptibility to
be extracted. In general, magnetization (M) of any material can be expanded into a sum of
powers of the magnetic field H as

M= My + yH + as ol + a3 jpH + ...,
where M, is spontaneous magnetization, %; linear susceptibility and x, (n = 2, 3, 4,...) nonlinear
susceptibilities [15]. It can be shown that the terms ¥, can be determined by detecting the ac
susceptibility response by lock-in amplifier at multiples of the frequency f of the driving
magnetic field, as long as the magnitude of the field H is small [15]. The nonlinear susceptibility
3, determined by detecting signal at frequency 3f, for both the ground and photoexcited states of
Ko.6Co1.2[Fe(CN)g]-4.9H,0, is shown in Figure 2.4. In both states j; exhibits sharp peaks,
suggesting divergence of this quantity, as expected for spin-glass type of transition [15, 16].
This result is an additional indication of cooperative freezing of spins in Co-Fe Prussian blue; in
contrast, systems with progressive blocking of magnetic moments #; only show a weak
temperature dependence [17, 18]. After illumination j; is increased and the peak shifts to higher

temperature by ~2 K. While x3in the ground state shows a single sharp peak, in the photoexcited

state the peak is overlapped with a

(-]

weaker, broad feature that extends to T ~

(e
T

23 K. We attributed this feature to the
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Ko.6C01.2[Fe(CN)g]-4.9H,0, measured at applied magnetic field H = 10 Oe, is displayed in Fig.

2.5. Below T, = 16 K (for the ground state), M starts to rapidly increase. At a bifurcation

temperature, T}, just below T, a deviation between the field-cooled (M) and zero-field-cooled

(M) magnetization curves arises, indicating irreversible magnetic behavior. While M

increases monotonically as temperature is lowered, My exhibits a maximum at temperature Tnax

~ 12 K (in the ground state), below which temperature the irreversibility becomes much more

pronounced.

While at low applied magnetic fields the temperature of the Mjy/My. bifurcation T}

approaches T, as H is increased T} shifts to lower temperatures (Fig. 2.6). The presence of

Before illumination
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Fig. 2.6. Field-cooled (solid symbols) and zero-
field-cooled (open symbols) magnetization at
different applied dc fields, before and after
illumination.

irreversibility, with a field-dependent
bifurcation, is characteristic for spin glasses
and spin glass-like materials [15, 20].

In the photoexcited state all
characteristic temperatures (7., 7Tp, and
Tax) are increased, indicating a shift of the
entire dynamics of magnetic ordering to
higher temperatures. The field-cooled
magnetizaﬁon at low magnetic fields is
almost doubled by illumination (Fig. 2.5).

We detected very slow relaxation of
My and of the thermoremanent
magnetization (TRM, measured after
cooling in field and subsequently reducing
the field to zero) at T < T, which are further
indications of long relaxation times in the
material, characteristic for a system that

undergoes freezing of magnetic moments.




The time dependences of M., and TRM are displayed in Fig. 2.7.

>OF 1o5K
= 4.8 -
E 46
()
w 44
© 34 Al
= 32
X
S 30
28
10t 102 10° 10°
t(s
3.26 (s)
£)
£
[}
<
o
N 320::2 R
2
178 |
- T=5K
1.76 e
101 102 103 10¢
t(s)

Fig. 2.7. Time dependences of the zero-
field-cooled magnetization (top) and the
thermoremanent magnetization (bottom),
for applied field of 10 Oe.

response is characterized by two transitions:

Based on our experiments, we proposed
a model for the magnetic behavior of Co-Fe
Prussian blue analogs, as well as for the
photoinduced effects on this behavior [14]. The
strong irreversibility, the f-dependent ,(T) with
small values of 87T, and the slow relaxation of
TRM and My indicate long relaxation times, in
contrast to magnetic response of a long-range
magﬁetica]ly ordered system, and suggestive of
a spin-glass like magnetic order. However, the
monotonic increase in My with decreased T
indicates that short-range collinear order
coexists with the spin glass-like order. These
facts classify this material as a cluster glass-a

system with short-range collinear (ferrimagnetic

"in this case) magnetic order within spin clusters,

and with spin glass-like order among clusters’

magnetic moments [14]. The low-T magnetic

(1) At T = T, (the ‘quasicritical temperature’) spin-spin interactions become significant

enough to bring about short-range ferrimagnetic ordering of magnetic moments. The transition

is characterized by: (i) rapid increase in M; (ii) onset of the weak My/M irreversibility; (iii)

occurrence of nonzero y”(T); (iv) onset of the frequency dependence of y’'(T); (v) occurrence of

the nonlinear susceptibility. We proposed that the ferrimagnetic order is limited to clusters of

spins, the sizes of which increase as temperature is decreased, but always remain finite. At

temperatures just below 7, individual clusters undergo progressive blocking due to energy

10




barriers induced by crystalline and shape anisotropies, causing weak irreversibility and
frequency-dependent behavior.

(2) At a temperature defined as Ty = T,(f—=0) (the freezing temperature)‘the cluster-
cluster inferactions produce cooperative freezing of their magnetic moments in random
directions. The transition is characterized by: (i) peaks in ¥’(T), x”(T) and the nonlinear
susceptibility and (ii) onset of the strong My/M,. irreversibility and a peak in the low-field M.
This process is a real thermodynamic transition (with divergent spin glass correlation length
[16]), as suggested by the size of 8T, and divergent-like behavior of the nonlinear susceptibility.

This qualitative model readily incorporates effects of light excitation on the low-T
magnetic behavior [13, 14]. Upon light irradiation new spins are introduced into the lattice, as
discussed in the introduction. Higher spin concentration (n,) in the photoexcited state enables
formation of the spin clusters at a higher temperature T, um.  T.. Furthermore, at a given
temperature, higher n; leads to an increase in both the sizes of existing clusters and their
magnetization. As larger clusters have longer relaxation times, the entire dynamics of the system
is expected to shift to longer length and time scales in the photoexcited state, thus leading to
freezing at a higher temperature T ™™ > T,

We synthesized several Prussian blue analogs K;.2:Co1..[Fe(CN)s]-yH,0, with x in the
range 0.2-0.4, and detected cluster glass behavior in all these materials [14]. Our studies present
the first example of a system with coexisting cluster-glass and PIM behavior, and show that
disorder in these materials not only stabilizes PIM but also produces a highly unconventional
type of magnetic ordering, a result significant for optimization of the materials for possible

applications.
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Discovery and investigations of PIM in the organic-based magnet Mn(TCNE),x(CH,Cl,)

Fig. 2.8. Schematic structure of
tetracyanoethylene (TCNE).

The recently synthesized molecule-based
magnets M(TCNE),-y(solvent) (M =V, Fe, Mn, Co, Ni;
TCNE = tetracyanoethylene) are of considerable
interest because of their unusual magnetic properties
and high magnetic ordering temperatures [5, 6, 21]. In
each case the unpaired electrons are on both the
manganese ion and the bridging organic ligand
[TCNE]™ (Fig. 2.8) [21]. The M = V material is one of
only a few room-temperature molecule-based magnets

[6]. Elaborate magnetic studies and critical analyses

done by our group showed that Mn(TCNE),x(CH;Cl,) exhibits paramagnet-ferrimagnet

transition at 7= 75 K, and a reentrant transition to spin glass-like state at temperatures below 10

K [22].

We discovered dramatic PIM effects in Mn(TCNE),'x(CH,Cl,) (x~0.8) upon excitation

with light in the blue region of spectrum [23, 24]. While many phenomenological aspects of the

PIM are similar to the PIM effect in Co-Fe Prussian blue magnets, detailed analysis strongly

suggests a different underlying physical mechanism. This is the first observation of PIM in an

organic-based magnet, i.e., magnet with spins that reside on organic species ([TCNE]"). PIM is

observed at temperatures close to the boiling temperature of the inexpensive coolant liquid

nitrogen, which is a significant step towards possible applications. A clear goal of the proposed

research program is to develop systems where PIM occurs at room temperature.
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Fig. 2.9. Effects of light excitation on the field-
cooled magnetization of Mn(TCNE),x(CH,Cl,)
(x~0.8). Illuminated with ar%on -ion laser
(light intensity I~10 mW/cm" for both laser
ines) and halogen lamp (600 nm filter with
|l80 nm bandwidth, I~10 mW/cm?).

Figure 2.9 shows the effect of
illumination on the field-cooled
magnetization, measured at T = 5 K, in
static magnetic field H = 10 Oe. Upon
excitation with 2.54 eV (488 nm) argon
laser line, the magnetization increases, and
reaches saturation in about six hours. After
turning the laser off, M exhibits an
additional increase, Fig. 2.9, due to cooling
of the sample (M decreases with the
increase of temperature). The photoexcited
state persists even in the dark after
illumination. At 7 =5 K, the magnetization

decreases by only about 0.5% within 60 h

after illumination. Assuming that relaxation of PIM is exponential, this gives a lifetime of the

photoexcited state greater that 10° s. Tllumination with 2.41 eV (514.5 nm) laser line leads to a

partial reduction of the PIM (Fig. 1). Detailed study shows that PIM nearly identical to the one

obtained by the 2.54 eV line can be induced by excitation anywhere in the region ~2.54-3.00 eV,

with both monochromatic and broad-band light.

A weaker PIM effect is obtained by laser

excitation in the region ~2.35-2.50 eV. Partial reduction of PIM is obtained by excitation in the

region ~1.8-2.5 eV; the energies around 2 eV (~600 nm) are the most effective and reduce PIM

to about 60% of its maximum value (Fig. 2.9).
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ig. 2.10. In-phase (top) and out-of-phase
(bottom) ac susceptibility of the organic-based
agnet Mn(TCNE), x(CH,Cl,) (x~0.8),
efore and after illumination, measured at
requency of 333 Hz and applied ac
magnetic field of 15 Oe.

The ac susceptibility, for both the
ground and photoexcited states, is displayed
in Fig. 2.10. The susceptibility shows a
shoulder near 7T, (75 K), and a low-
temperature peak (at ~5 K in the ground state)
attributed to the reentrant transition, similar to
the previous report [22]. After illumination
(argon laser, 2.7 eV line, light intensity I ~50
mW/cm?, illuminated at 7 = 90 K for 60 h, ¥,
exhibits a large increase in the whole
temperature region below T.. The low-
temperature peak is shifted to ~7 K, indicating
increased reentrant transition temperature.
Enhancement of %’ is more than 50% in the
region 13-18 K, while increase in x” is more
than fourfold in the same temperature region.
As the out-of phase component x” is

proportional to the area of the hysteresis loop

formed during one period of oscillation of the

ac magnetic field [23,25], which is equal to the electromagnetic energy absorbed in the sample,

the enhanced y” indicates increased electromagnetic absorption. While the PIM detected below

T, was obtained by excitation at T = 90 K > T, no PIM was detected in the paramagnetic region

(T > T.). This suggests that no new spins are introduced into the system by illumination, which

is in stark contrast to the PIM effect in Prussian blue analogs, and suggests a different physical

origin of PIM.

The photoexcited state is not fully erased even after warming to 200 K (about 5% of

increase in (y ’ is maintained at 5 K). After warming above 250 K the material fully relaxes to




the state before illumination. Thus, while photoinduced effects on the magnetic state were not

detected in direct measurement of 7. above T, the photoexcited state is preserved at

temperatures high above the magnetic ordering temperature.

In order to determine changes in electronic configuration that accompany the PIM effect,

we performed photoinduced absorption (PA) studies in the UV/Visible region of spectrum. The

direct absorption spectrum, measured at 7 = 13 K, is shown in Fig. 2.11(a). The band in the

region 2.5-3.5 eV, with pronounced vibrational structure, is assigned to the (m - 7* transition of
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Fig. 2.11. (a) Direct absorption spectrum of

n(TCNE),-x(CH,Cl,) (x~0.8) at 13K. The
intervals designate regions of excitation
nergies for which PIM and partial reversal

f PIM are observed. (b) Photoinduced
bsorption spectrum at 13 K. AA was
easured after excitation with 2.54 eV argon
aser line (solid line), and after subsequent
illumination with 2.41 eV laser line (dots).
ight intensity ~10 mW/cm?, 10 min
illumination for both laser lines.
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the [TCNE]™ ion, while, the weaker
absorption band in the region 1.5-2.5 €V is
tentatively assigned to a charge transfer
transition between metal and ligand [23]. The
spectrum indicates that PIM is obtained by
excitation in the (m - 7* band, while
reduction of PIM is obtained by excitation in
the energy region overlapping with the
charge transfer band.

The PA spectrum, Fig. 2.11(b), was
measured after 10 min illumination with 2.54
eV laser line. The spectrum was obtained by
subtracting the direct absorption spectra
before and after illumination. Photoinduced
absorption is detected in the rc;gions 1.5-24
eV and 3.1-3.8 eV, while in the region
2.4-3 eV bleaching (decreased absorption) is

observed. These photoinduced effects are

also maintained long after illumination, and




can be partially reduced with 2.4 eV line excitation [Fig. 2.11(b)].
The fact that PIM is induced by the

(@) || internal m - m* transition of [TCNE] is

0.80 |-
S 060 additional  indication that PIM in
g’ 00 | Mn(TCNE),x(CH,Cl;) the ones previously
020 reported. It contrasts the effects observed in

Prussian blue magnets, in which excitation of

0.02 |
—~ 001 I \ charge transfer bands is responsible for PIM
S Y k. W
; 00 ‘ »
g 00F [3], as well as the photoinduced transition
< -0.01F
< 002 between the localized low-spin and high-spin
-0.03
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[Fig. 2.12. (a) Infrared spectrum measured at internal d-d transitions [26].
13 K. (b) Infrared photoinduced absorption
after illumination with 2.54 eV laser line (solid The UV-Vis PA, maintained long after
line), and after subsequent illumination with ) o ]
b.41 eV line (dots). Light intensity ~10 illumination, suggests that PIM is due to a
2 .. . .
?W/ cm’, 10 min illumination for both laser photoinduced electronic transition into a long-
ines.

living (metastable) state. ~ Assuming the
assignment of optical transitions given above, the photoinduced absorption peak at ~2 eV, in the
region of charge transfer band, indicates that in the metastable state charge transfer is enhanced.
An important question is whether PIM is accompanied by structural changes, i.e., by
distorted chemical bonds and/or angles between bonds (lattice distortions’). Such changes are
reflected in the infrared spectrum as alterations of energies and intensities in vibrational modes.
In order to answer this question we performed infrared PA studies.
Figure 2.12(a) shows low-temperature infrared spectrum of Mn(TCNE), x(CH,Cl,)
(x~0.8). The peaks in the region 2180-2260 cm” correspond to the C=N stretching modes of
[TCNE]", while the peak at 1370 cm’ is assigned to the stretching vibration of the central

[TCNE]™ carbon atoms [23]. The PA spectrum after 10 min excitation with 2.54 eV line is
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shown in Fig. 2.12(b). The shown effects correspond to a decrease in the magnitude of the 2185
cm’ peak, while the 2191 cm’ peak increases. Furthermore, the peak at 2236 cm’ is slightly
shifted to lower energies. Substantial photoinduced absorption also is detected in the region of
the 1370 cm” mode. Metastability of the photoexcited state and partial reduction of the
photoinduced effect by the 2.4 eV line also were observed, Fig. 2.12(b), in full correlation with
the effects observed in the magnetic and UV/Vis PA experiments.

As noted above, the changes in the infrared spectrum suggest presence of a structural
distortion. Following the optically induced m — 7* transition, a fraction of electrons may relax
from the 7" level into this state with altered geometry, occurring through the electron-phonon
coupling. The altered geometry is expected to affect the overlap integrals between the metal and
the ligand orbitals, including the spin carrying orbitals (d orbitals of Mn" and 7* orbitals of
[TCNE]). As the overlap integrals control both the charge transfer between the metal and
coordinating [TCNE]", and the exchange interaction, both the charge transfer and exchange may
be enhanced in the metastable state. This would lead to increased charge transfer absorption and
increased magnetic susceptibility, as detected in our experiments.

We proposed [23] that the remarkable metastability of the photoexcited state also has its
origin in this lattice distortion. Lattice relaxation may produce a local energy minimum for the
excited state, separating it from the ground state by an energy barrier. At low temperatures
vibrational excitations are insufficient to surmount the energy barrier, and the system is trapped
in the excited state. A lattice distortion was likewise proposed as a key for stabilization of PIM

in the case of Prussian blue magnets [7, 11].

These results demonstrate striking effects of visible light on the magnetic, electronic, and
vibrational properties of the organic-based magnet Mn(TCNE)x(CH,Cl;). The high-
temperature PIM in an organic-based system, the properties of which are modifiable through
versatile organic chemistry methods, opens a promising new pathway towards materials with

desired PIM properties.
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